
A new tidy data structure to

support exploration and modeling

of temporal data

Earo Wang
Department of Econometrics and Business Statistics,
Monash University, VIC 3800
Australia.

CSIRO Data61,
Private Bag 10, South Clayton, VIC 3169
Email: earo.wang@monash.edu
Corresponding author

Dianne Cook
Department of Econometrics and Business Statistics,
Monash University, VIC 3800
Australia.
Email: dicook@monash.edu

Rob J Hyndman
Department of Econometrics and Business Statistics,
Monash University, VIC 3800
Australia.
Email: rob.hyndman@monash.edu

12 December 2019

JEL classification: C88, C81, C82, C22, C32

mailto:earo.wang@monash.edu
mailto:dicook@monash.edu
mailto:rob.hyndman@monash.edu


A new tidy data structure to

support exploration and modeling

of temporal data

Abstract

Mining temporal data for information is often inhibited by a multitude of formats: regular or

irregular time intervals, point events that need aggregating, multiple observational units or

repeated measurements on multiple individuals, and heterogeneous data types. This work

presents a cohesive and conceptual framework for organizing and manipulating temporal data,

which in turn flows into visualization, modeling and forecasting routines. Tidy data principles

are extended to temporal data by: (1) mapping the semantics of a dataset into its physical layout;

(2) including an explicitly declared “index” variable representing time; (3) incorporating a “key”

comprising single or multiple variables to uniquely identify units over time. This tidy data

representation most naturally supports thinking of operations on the data as building blocks,

forming part of a “data pipeline” in time-based contexts. A sound data pipeline facilitates a

fluent workflow for analyzing temporal data. The infrastructure of tidy temporal data has been

implemented in the R package, called tsibble.

Keywords: time series, longitudinal data, data wrangling, tidy data, R, forecasting, data science,

exploratory data analysis, data pipelines

1 Introduction

Temporal data arrives in many possible formats, with many different time contexts. For example,

time can have various resolutions (hours, minutes, and seconds), and can be associated with

different time zones with possible adjustments such as daylight saving time. Time can be regular

(such as quarterly economic data or daily weather data), or irregular (such as patient visits to

a doctor’s office). Temporal data also often contains rich information: multiple observational

units of different time lengths, multiple and heterogeneous measured variables, and multiple

grouping factors. Temporal data may comprise the occurrence of time-stamped events, such as

flight departures.

2



A new tidy data structure to support exploration and modeling of temporal data

Perhaps because of this variety and heterogeneity, little organization or conceptual oversight on

how one should get the wild data into a tamed state is available for temporal data. Analysts

are expected to do their own data preprocessing and take care of anything else needed to allow

further analysis, which leads to a myriad of ad hoc solutions and duplicated efforts.

Wickham & Grolemund (2016) proposed the tidy data workflow, to give a conceptual framework

for exploring data (as described in Figure 1). In the temporal domain, data with time informa-

tion arrives at the “import” stage. A new abstraction, tsibble, introduced in this paper, is the

gatekeeper at the “tidy” stage, to verify if the raw temporal data is appropriate for downstream

analytics. The exploration loop will be aided with declarative grammars, yielding more robust

and accurate analyses.

Explore

Import

temporal 
data

tsibble 

Tidy Transform

Visualise

Communicate

Model

Figure 1: Annotation of the data science workflow regarding temporal data, drawn from Wickham &
Grolemund (2016). The new data structure, tsibble, makes the connection between temporal
data input, and downstream analytics. It provides elements at the “tidy” step, which produce
tidy temporal data for temporal visualization and modeling.

The paper is structured as follows. Section 2 reviews temporal data structures corresponding to

time series and longitudinal analysis, and discusses “tidy data”. Section 3 proposes contextual

semantics for temporal data, built on top of tidy data principles. The concept of data pipelines,

with respect to the time domain, is discussed in depth in Section 4, followed by a discussion

of the design choices made in the software implementation in Section 5. Two case studies

are presented in Section 6 illustrating temporal data exploration using the new infrastructure.

Section 7 summarizes current work and discusses future directions.

Wang, Cook, Hyndman: 12 December 2019 3



A new tidy data structure to support exploration and modeling of temporal data

2 Data structures

2.1 Comparing time series and longitudinal data

Temporal data problems often fall into two types of analysis, time series and longitudinal. Both

of these may have similar data input, but the representation for modeling is typically different.

Time series analysis tends to focus on the dependency within series, and the cross-correlation

between series. Longitudinal analysis tends to focus on overall temporal patterns across demo-

graphic or experimental treatment strata, that incorporates within subject dependency.

Time series can be univariate or multivariate, and require relatively long lengths (i.e., large

T) for modeling. With this large T property, the series can be handled as stochastic processes

for the primary purposes of forecasting and characterizing temporal dynamics. Due to an

expectation of regularly spaced time, and equal lengths across series, multivariate time series are

typically assumed to be in the format where each column contains a single time series, and time

is specified implicitly. This also implies that data are columns of homogeneous types: either all

numeric or all non-numeric. It can be frustrating to wrestle data from its original format to this

modeling format. The format could be considered to be model-centric, rather than data-centric,

and thus throws the analyst into the deep end of the pool, rather than allowing them to gently

wade to the modeling stage from the shallow end. The expectation is that the “model” is at the

center of the analytical universe. This is contrary to the tidyverse conceptualization (Figure 1),

which holistically captures the data workflow. More support needs to be provided, in the form

of consistent tools and data structures, to transform the data into the analytical cycle.

Longitudinal data (or panel data) typically assumes fewer measurements (small T) over a large

number of individuals (large N). It often occurs that measurements for individuals are taken

at different time points, and in different quantities. The primary format required for modeling

is stacked data, blocks of measurements for each individual, with columns indicating panels,

times of measurement and the measurements themselves. An appealing feature is that data is

structured in a semantic manner with reference to observations and variables, with panel and

time explicitly stated.

2.2 Existing data standards

In R (R Core Team 2018), time series and longitudinal data are of different representations. The

native ts object and the enhancements by zoo (Zeileis & Grothendieck 2005) and xts (Ryan &

Ulrich 2018), assemble time series into wide matrices with implicit time indexes. If there are

multiple sub-groups, such as country or product type, these would be kept in different data

Wang, Cook, Hyndman: 12 December 2019 4



A new tidy data structure to support exploration and modeling of temporal data

objects. A relatively new R package tibbletime (Vaughan & Dancho 2018b) proposed a data

class of time tibble to represent time series in heterogeneous long format. It only requires an

index variable to be declared. However, this is insufficient, and a more rigid data structure is

required for temporal analytics and modeling. The plm (Croissant & Millo 2008) and panelr

(Long 2019) packages both manage longitudinal data in long format.

Stata (StataCorp 2017) provides two commands, tsset and xtset, to declare time series and

panels respectively, both of which require explicit panel id and time index specification. Different

variables would be stored in multiple columns. The underlying data arrangement is only long

form, for both types of data. Both groups of functions can be applied interchangeably to whether

the data is declared for time series or longitudinal data. The SAS software (SAS Institute Inc.

2018) also handles both types of data in the same way as Stata.

2.3 Tidy data

Wickham (2014) coined the term “tidy data”, to standardize the mapping of the semantics of

a dataset to its physical representation. In tidy form, rows correspond to observations and

columns to variables. Tidy data is a rephrasing of the second and third normal forms from

relational databases, but the explanation in terms of observations and variables is easier to

understand because it uses statistical terminology.

Multiple time series, with each column corresponding to a measurement is tidy data when the

time index is explicitly stored in a column. The stacked data format used in longitudinal data is

tidy, and accommodates explicit identification of sub-groups.

The tidy data structure is the fundamental unit of the tidyverse, which is a collection of R

packages designed for data science. The ubiquitous use of the tidyverse is testament to the

simplicity, practicality and general applicability of the tools. The tidyverse provides abstract

yet functional grammars to manipulate and visualize data in easier-to-comprehend form. One

of the tidyverse packages, dplyr (Wickham et al. 2019), showcases the value of a grammar as a

principled vehicle to transform data for a wide range of data challenges, providing a consistent

set of verbs: mutate(), select(), filter(), summarize(), and arrange(). Each verb focuses

on a singular task. Most common data tasks can be rephrased and tackled with these five key

verbs, in conjunction with group_by() to perform grouped operations.

The tidyverse largely formalizes exploratory data analysis. Many in the R community have

adopted the tidyverse way of thinking and extended it to broader domains, such as simple

features for spatial data in the sf package (Pebesma 2018) and missing value handling in the

Wang, Cook, Hyndman: 12 December 2019 5



A new tidy data structure to support exploration and modeling of temporal data

naniar package (Tierney & Cook 2018). This paper with the associated tsibble R package (Wang,

Cook & Hyndman 2019) extends the tidy way of thinking to temporal data.

For temporal data, the tidy definition needs additional criteria, that assist in handling the time

context. This is addressed in the next section, and encompasses both time series and longitudinal

data. It provides a unified framework to streamline the workflow from data preprocessing to

visualization and modeling, as an integral part of a tidy data analysis.

3 Contextual semantics

The choice of tidy representation of temporal data arises from a data- and model-oriented

perspective, which can accommodate all of the operations that are to be performed on the data

in time-based contexts. Figure 1 marks where this new abstraction is placed in the tidy model,

which is referred to as a “tsibble”. The “tidy data” principles are adapted in tsibble with the

following rules:

1. Index is a variable with inherent ordering from past to present.

2. Key is a set of variables that define observational units over time.

3. Each observation should be uniquely identified by index and key.

4. Each observational unit should be measured at a common interval, if regularly spaced.

Figure 2 sketches out the data form required for a tsibble, an extension of the tidy format to the

time domain. Beyond the layout, tsibble gives the contextual meaning to variables in order to

construct the temporal data object, as newly introduced “index” and “key” semantics stated in

definitions 1 and 2 above. Variables other than index and key are considered as measurements.

Definitions 3 and 4 imply that a tsibble is tidier than tidy data, positioning itself as a model input

that gives rise to more robust and reliable downstream analytics.

index key measurements

Figure 2: The architecture of the tsibble structure is built on top of the “tidy data” principles, with
temporal semantics: index and key.

To materialize the abstraction of the tsibble, a subset of tuberculosis cases (World Health Or-

ganization 2018), as presented in Table 1, is used as an example. It contains 12 observations

and 5 variables landing in a tidy data form. Each observation comprises the number of people

Wang, Cook, Hyndman: 12 December 2019 6



A new tidy data structure to support exploration and modeling of temporal data

who are diagnosed with tuberculosis for each gender at three selected countries in the years

of 2011 and 2012. From tidy data to tsibble data, index and key should be declared: column

year as the index variable, and column country together with gender as the key variables

forming the observational units. Column count is the only measured variable in this data, but

the data structure is sufficiently flexible to hold more measurements; for example, slotting the

corresponding population size (if known) into the data column for normalizing the count later.

Note, this data further satisfies the need for the distinct rows to be determined by index and key,

and is regularly spaced over one-year intervals.

Table 1: A small subset of estimates of tuberculosis burden collected by World Health Organization in
2011 and 2012, with 12 observations and 5 variables. The index refers to column year, the key
to multiple columns: country and gender, and the measured variable to column count.

country continent gender year count

Australia Oceania Female 2011 120
Australia Oceania Female 2012 125
Australia Oceania Male 2011 176
Australia Oceania Male 2012 161
New Zealand Oceania Female 2011 36
New Zealand Oceania Female 2012 23
New Zealand Oceania Male 2011 47
New Zealand Oceania Male 2012 42
United States of America Americas Female 2011 1170
United States of America Americas Female 2012 1158
United States of America Americas Male 2011 2489
United States of America Americas Male 2012 2380

The new tsibble structure bridges the gap between raw data and the rigorous state of temporal

data analysis. The proposed contextual semantics is the new add-on to tidy data in order to

support more intuitive time-related manipulations and enlighten new perspectives for time

series and panel model inputs. Index, key and time interval form the three pillars to this new

semantically structured temporal data. Each is now described in more detail.

3.1 Index

Index is a variable with inherent ordering from past to present.

Time provides the contextual basis for temporal data. Time can be seen in numerous represen-

tations, from sequential numerics to the most commonly accepted date-times. Regardless of

this diversity, time should be inherently ordered from past to present, so should be the index

variable to a tsibble.

Wang, Cook, Hyndman: 12 December 2019 7



A new tidy data structure to support exploration and modeling of temporal data

Index is an explicit data variable rather than a masked attribute (such as in the ts and zoo

classes), exposing a need for more accessible and transparent time operations. It is often

necessary to visualize and model seasonal effects of measurements of interest, meaning that

time components, such as time of day and day of week, should be easily extracted from the

index. When the index is available only as meta information, it creates an obstacle for analysts by

complicating the writing of even simple queries, often requiring special purpose programming.

From an analytical point of view this should be discouraged.

3.2 Key

Key is a set of variables that define observational units over time.

What subjects/entities are to be observed over time, leads to the second component of a tsibble–

key. The key can consist of empty, single, or multiple variables identifying units measured

along the way. When only a single observational unit is present in the table, no key needs

to be specified. However, when multiple units exist in the data, the key should be supplied

by identifying variables to sufficiently define the units. In longitudinal data, the key can be

thought of as “panel” (such as in the Stata) but constrained to a single variable in existing data

structures. In tsibble, the key allows for multiple variables of nesting, crossing, or union relations

(Wilkinson 2005), that can be useful for forecasting reconciliation (Hyndman & Athanasopoulos

2017; Hyndman et al. 2018) and richer visualization. For example, Table 1 describes the number

of tuberculosis cases for each gender across the countries every year. This suggests that the key

comprises at least columns gender and country. Since country is nested within continent,

continent can be included in the key specification, but is not compulsory.

Each observation should be uniquely identified by index and key.

Inspired by a “primary key” (Codd 1970), a unique identifier for each observation in a relational

database, the tsibble key also uniquely identifies each observational unit over time. When

constructing a tsibble, any duplicates of key-index pairs will fail, because duplicates signal a

data quality issue, which would likely affect subsequent analyses and hence decision making.

For example, either gender or country alone is not enough to be the key for the tuberculosis

data. Analysts are encouraged to better understand the data, or reason about the process of data

cleaning when handling duplicates. Figure 3 reveals the tidy module with clear routes required

for a tsibble. The rigidity of tsibble, as the fundamental data infrastructure, ensures the validity

of subsequent temporal data analysis.

Wang, Cook, Hyndman: 12 December 2019 8



A new tidy data structure to support exploration and modeling of temporal data

Import 
temporal data

Check 
duplicates

Find
duplicates

Create
tsibble

Fix
duplicates Tidy

Yes

No

Figure 3: Details about the tidy stage for a tsibble. Built on top of “tidy data”, each observation should
be uniquely identified by index and key, thereby no duplicated key-index pairs.

Since observational units are embedded, modeling and forecasting across units and time in a

tsibble will be simplified. The tsibble key plays a role of the central transit hub in connecting

multiple tables managed by the data, models, and forecasts. This neatly decouples the expensive

data copying from downstream summarization, which can significantly reduce the required

storage space.

3.3 Interval

Each observational unit should be measured at a common interval, if regularly spaced.

The principal divide of temporal data is regularly versus irregularly spaced data. Event data

typically involves irregular time intervals, such as flight schedules or customer transactions.

This type of data can flow into event-based data modeling, but would need to be processed, or

regularized, to fit models that expect data with a fixed-time interval.

There are three possible interval types: fixed, unknown, and irregular. To determine the interval

for regularly spaced data, tsibble computes the greatest common divisor as a fixed interval. If

only one observation is available for each unit, which may occur after aggregating data, the

interval is reported as unknown. When the data arrives with irregular time, like event data, the

interval would be specified as irregular, to prevent the tsibble creator attempting to guess an

interval.

To abide by the “tidy data” rules – “Each type of observational unit should form a table” – in a

tsibble each observational unit shares a common interval. This means that a tsibble will report

one single interval, whether the data has a fixed or mixed set of intervals. To handle mixed

interval data, it should be organized into separate tsibbles for a well-tailored analysis.

This tiny piece of information, the interval, is carried over for tsibble-centric operations. For

example, this makes implicit missing time handling convenient, and harmoniously operates

with statistical calculations, and models, on seasonal periods.

Wang, Cook, Hyndman: 12 December 2019 9



A new tidy data structure to support exploration and modeling of temporal data

4 Temporal data pipelines

A data pipeline describes the flow of data through an analysis, and can generally assist in

conceptualizing the process for a stream of problems. McIlroy, Pinson & Tague (1978) coined the

term “pipelines” in software development while developing Unix at Bell Labs. In Unix-based

computer operating systems, a pipeline chains together a series of operations based on their

standard streams, so that the output of each program becomes the input to another. The Extract,

Transform, and Load (ETL) process, described in recent data warehousing literature (Kimball &

Caserta 2011), outlines the workflow to prepare data for analysis, and can also be considered a

data pipeline. Buja et al. (1988) describes a viewing pipeline for interactive statistical graphics,

that takes control of the transformation from data to plot. Swayne, Cook & Buja (1998), Swayne

et al. (2003), Sutherland et al. (2000), Wickham et al. (2010) and Xie, Hofmann & Cheng (2014)

implemented data pipelines for the interactive statistical software XGobi, GGobi, Orca, plumbr

and cranvas, respectively.

A fluent data pipeline anticipates a standard data structure. The tsibble data abstraction lays the

plumbing for data analysis modules of transformation, visualization and modeling in temporal

contexts. It provides a data infrastructure to a new ecosystem, tidyverts (Tidyverts Team 2019).

(The name “tidyverts” is a play on the term “tidyverse” that acknowledges the time series

analysis purpose.)

4.1 Transformation

The tsibble package not only provides a tsibble data object but also a domain specific language

in R for transforming temporal data. It takes advantage of the wrangling verbs implemented in

the dplyr package, and develops a suite of new tools for facilitating temporal manipulation for

primarily easing two aspects: implicit missingness handlers and time-aware aggregations.

Implicit missings are values that should be present but are absent. In regularly spaced temporal

data, these are data entries that should be available at certain time points but are missing, leaving

gaps in time. These can be detected when computing the interval estimate. It will be a problem

for temporal models and operations like lag/lead, that expect consecutive time. A family of

verbs is provided to help explore implicit missing values, and convert them into an explicit state,

as follows:

• has_gaps() checks the existence of time gaps.

• scan_gaps() reveals all implicit missing observations.

• count_gaps() summarizes the time ranges that are absent from the data.

Wang, Cook, Hyndman: 12 December 2019 10



A new tidy data structure to support exploration and modeling of temporal data

• fill_gaps() turns them into explicit ones, along with imputing by values or functions.

These verbs are evocative, and of simple interface. They, by default, look into gaps for each

individual time period. Switching on the option .full = TRUE will fill in the full-length time

span, and create fully balanced panels in longitudinal data, when possible.

The other important function, is an adverb, index_by(), which is the counterpart of group_by()

in dplyr, grouping and partitioning by the index only. It is most often used in conjunction with

summarize(), thus creating aggregations to higher-level time resolutions. This combination

automatically produces a new index and interval, and can also be used regularize data of

irregular interval.

In addition to the new verbs, the dplyr vocabulary has been adapted and expanded to facilitate

temporal transformations. The dplyr suite showcases the general-purpose verbs for effectively

manipulating tabular data. But these verbs need handling with care due to the context switch.

A perceivable difference is summarizing variables between normal data and tsibble using

summarize().The former gives a single summary for a data table, and the latter provides the

corresponding summary for each index value.

Attention has been paid to warning and error handling. The principle that underpins most verbs

is a tsibble in and a tsibble out, thereby striving to maintain a valid tsibble over the course of the

transformation pipeline. If the desired temporal ordering is changed by row-wise verbs (such

as arrange() and slice()), a warning is broadcast. If a tsibble cannot be maintained in the

output of a pipeline module (likely occurring with column-wise verbs), for example the index

is dropped by select()-ing, an error informs users of the problem and suggests alternatives.

This avoids surprising users and reminds them of the time context. In general, users who are

already familiar with the tidyverse, should have less resistance to learning the new semantics

and verbs.

4.2 Visualization

The ggplot2 package (Wickham 2009) (as the implementation of grammar of graphics) builds a

powerful graphical system to declaratively visualize data. The data underpinning of ggplot2

is tidy data, and in turn tsibble integrates well with ggplot2. The integration encourages more

flexible graphics for exploring temporal structures via index, and individual or group differences

via key.

Line charts are universally accepted for ordered data, such as time series plots or spaghetti plots,

depending on the fields. But they end up with exactly the same grammar: chronological time

Wang, Cook, Hyndman: 12 December 2019 11



A new tidy data structure to support exploration and modeling of temporal data

mapped to the horizontal axis, and the measurement of interest on the vertical axis, for each unit.

Many specialist plots centering around time series or longitudinal data, can hence be described

and re-created under the umbrella of the grammar and ggplot2.

4.3 Model

Modeling is crucial to explanatory and predictive analytics, where time series and longitudinal

data analysis diverge. The tsibble, as a model-oriented object, can flow into both types of

modeling, and the new semantics (index and key) can be internally utilized to accelerate

modeling.

Most time series models are univariate, such as ARIMA and Exponential Smoothing, modeling

temporal dynamics for each series independently. The fable package (O’Hara-Wild, Hyndman &

Wang 2019), currently under development, provides a tidy forecasting framework built on top of

tsibble, with the goal of promoting transparent and human-centered forecasting practices. With

the presence of the key, a tsibble can hold many series. Since models are fundamentally scalable,

the model() and forecast() generics will take care of fitting and forecasting univariate models

to each series across time in a tsibble at once.

Panel data models, however, put emphases on overall, within, and between variation both

across individuals and time. Fixed and random effects models could be developed in line with

the fable design.

4.4 Summary

To sum up, the tsibble abstraction provides a formal organization of forwarding tidy data

to model-oriented temporal data. The supporting operations can be chained for sequencing

analysis, articulating a data pipeline. As Friedman & Wand (2008) stated, “No matter how

complex and polished the individual operations are, it is often the quality of the glue that

most directly determines the power of the system.” A mini snippet below, illustrates how

transformation and forecasting are glued together, to realize the fluent pipeline.

pedestrian %>%

fill_gaps() %>% # turn implicit missingness to explicit

filter(year(Date_Time) == 2016) %>% # subset data of year 2016

model(arima = ARIMA(Count)) %>% # fit ARIMA to each sensor

forecast(h = days(2)) # forecast 2 days ahead

Here, the pedestrian dataset (City of Melbourne 2017), available in the tsibble package is

used. It contains hourly tallies of pedestrians at four counting sensors in 2015 and 2016 in inner

Wang, Cook, Hyndman: 12 December 2019 12



A new tidy data structure to support exploration and modeling of temporal data

Melbourne. The pipe operator %>% introduced in the magrittr package (Bache & Wickham 2014)

chains the verbs, read as “then”. A sequence of functions are composed in a way that can be

naturally read from left to right, which improves the code readability. This code is read as “take

the pedestrian data, fill the temporal gaps, filter to 2016 measurements, then apply an ARIMA

model and forecast ahead 2 days.”

Piping coordinates a user’s analysis making it cleaner to follow, and permits a wider audience to

follow the data analysis from code, without getting lost in a jungle of computational intricacies.

It helps to (1) break up a big problem into more manageable blocks, (2) generate human readable

analysis workflow, and (3) forestall introducing mistakes or, at least, make it possible to track,

and fix, mistakes upstream through the pipeline.

5 Software structure and design decisions

The tsibble package development follows closely to the tidyverse design principles (Tidyverse

Team 2019).

5.1 Data first

The primary force that drives the software’s design choices is “data”. All functions in the

package tsibble start with data or its variants as the first argument, namely “data first”. This

lays out a consistent interface and addresses the significance of the data throughout the software.

Beyond the tools, the print display provides a quick and comprehensive glimpse of data in

temporal contexts, particularly useful when handling a large collection of data. The contextual

information provided by the print() function, shown below from Table 1, contains (1) data

dimension with its shorthand time interval, alongside time zone if date-times, (2) variables that

constitute the “key” with the number of units. These summaries aid users in understanding

their data better.

#> # A tsibble: 12 x 5 [1Y]

#> # Key: country, gender [6]

#> country continent gender year count

#> <chr> <chr> <chr> <dbl> <dbl>

#> 1 Australia Oceania Female 2011 120

#> 2 Australia Oceania Female 2012 125

#> 3 Australia Oceania Male 2011 176

#> 4 Australia Oceania Male 2012 161

Wang, Cook, Hyndman: 12 December 2019 13



A new tidy data structure to support exploration and modeling of temporal data

#> 5 New Zealand Oceania Female 2011 36

#> # ... with 7 more rows

5.2 Functional programming

Rolling window calculations are widely used techniques in time series analysis, and often apply

to other applications. These operations are dependent on having an ordering, particularly time

ordering for temporal data. Three common types of variations for sliding window operations

are:

1. slide: sliding window with overlapping observations.

2. tile: tiling window without overlapping observations.

3. stretch: fixing an initial window and expanding to include more observations.

Figure 4 shows animations of rolling windows for sliding, tiling and stretching on annual

tuberculosis cases for Australia. A block of consecutive elements with a window size of 5 is

initialized in each case, and the windows roll sequentially to the end of series, with average

counts being computed within each window.

Rolling windows adapt to functional programming, for which the purrr package (Henry &

Wickham 2019a) sets a good example. These functions accept and return arbitrary inputs

and outputs, with arbitrary methods. For example, moving averages anticipate numerics and

produce averaged numerics via mean(). However, rolling window regression feeds a data

frame into a linear regression method like lm(), and generates a complex object that contains

coefficients, fitted values, etc.

Rolling windows not only iterate but roll over a sequence of elements of a fixed window. A com-

plete and consistent set of tools is available for facilitating window-related operations, a family

of slide(), tile(), stretch(), and their variants. slide() expects one input, slide2() two

inputs, and pslide() multiple inputs. For type stability, the functions always return lists. Other

variants including *_lgl(), *_int(), *_dbl(), *_chr() return vectors of the corresponding

types, as well as *_dfr() and *_dfc() for row-binding and column-binding data frames re-

spectively. Their multiprocessing equivalents prefixed by future_*() enable rolling in parallel,

via future (Bengtsson 2019) and furrr (Vaughan & Dancho 2018a).

5.3 Modularity

Modular programming is adopted in the design of the tsibble package. Modularity benefits

users by providing small focused and cleaner chunks, and provides developers with simpler

maintenance.

Wang, Cook, Hyndman: 12 December 2019 14



A new tidy data structure to support exploration and modeling of temporal data

Figure 4: An illustration of a window of size 5 to compute rolling averages over annual tuberculosis
cases in Australia using sliding, tiling and stretching. The animations are available with
the supplementary materials online, and can also be viewed directly at https://github.com/
earowang/paper-tsibble/blob/master/ img/animate-1.gif .

All user-facing functions can be roughly organized into three major chunks according to their

functionality: vector functions (1d), table verbs (2d), and window family. Each chunk is an

independent module, but works interdependently. Vector functions in the package mostly

operate on time. The atomic functions (such as yearmonth() and yearquarter()) can be

embedded in the index_by() verb to collapse a tsibble to a less granular interval. Since they

are not tied to a tsibble, they can be used in a broader range of data applications not constrained

to tsibble. On the other hand, the table verbs can incorporate many other vector functions from

a third party, like the lubridate package (Grolemund & Wickham 2011).

Wang, Cook, Hyndman: 12 December 2019 15

https://github.com/earowang/paper-tsibble/blob/master/img/animate-1.gif
https://github.com/earowang/paper-tsibble/blob/master/img/animate-1.gif


A new tidy data structure to support exploration and modeling of temporal data

5.4 Extensibility

As a fundamental infrastructure, extensibility is a design decision that was employed from the

start of tsibble’s development. Contrary to the “data first” principle for end users, extensibility

is developer focused and would be mostly used in dependent packages; it heavily relies on S3

classes and methods in R (Wickham 2018). The package can be extended in two major ways:

custom indexes and new tsibble classes.

Time representation could be arbitrary, for example R’s native POSIXct and Date for versatile

date-times, nano time for nanosecond resolution in nanotime (Eddelbuettel & Silvestri 2018),

and numerics in simulation. Ordered factors can also be a source of time, such as month names,

January to December, and weekdays, Monday to Sunday. The tsibble package supports an

extensive range of index types from numerics to nano time, but there might be custom indexes

used for some occasions, for example school semesters. These academic terms vary from one

institution to another, with the academic year defined differently from a calendar year. A

new index would be immediately recognized upon defining index_valid(), as long as it can

be ordered from past to future. The interval regarding semesters is further outlined through

interval_pull(). As a result, all tsibble methods such as has_gaps() and fill_gaps() will

have instant support for data that contains this new index.

The class of tsibble is an underpinning for temporal data, and sub-classing a tsibble will be

a demand. A low-level constructor new_tsibble() provides a vehicle to easily create a new

subclass. This new object itself is a tsibble. It perhaps needs more metadata than those of

a tsibble, that gives rise to a new data extension, for example prediction distributions to a

forecasting tsibble.

5.5 Tidy evaluation

The tsibble package leverages the tidyverse grammars and pipelines through tidy evaluation

(Henry & Wickham 2019c) via the rlang package (Henry & Wickham 2019b). In particular, the

table verbs extensively use tidy evaluation to evaluate computation in the context of tsibble data

and spotlight the “tidy” interface that is compatible with the tidyverse. This not only saves a

few keystrokes without explicitly repeating references to the data source, but the resulting code

is typically cleaner and more expressive, when doing interactive data analysis.

Wang, Cook, Hyndman: 12 December 2019 16



A new tidy data structure to support exploration and modeling of temporal data

6 Case studies

6.1 On-time performance for domestic flights in U.S.A

The dataset of on-time performance for US domestic flights in 2017 represents event-driven data

caught in the wild, sourced from US Bureau of Transportation Statistics (Bureau of Transportation

Statistics 2018). It contains 5,548,445 operating flights with many measurements (such as

departure delay, arrival delay in minutes, and other performance metrics) and detailed flight

information (such as origin, destination, plane number, etc.) in a tabular format. This kind of

event describes each flight scheduled for departure at a time point in its local time zone. Every

single flight should be uniquely identified by the flight number and its scheduled departure

time, from a passenger’s point of view. In fact, it fails to pass the tsibble hurdle due to duplicates

in the original data. An error is immediately raised when attempting to convert this data into

a tsibble, and a closer inspection has to be carried out to locate the issue. The tsibble package

provides tools to easily locate the duplicates in the data with duplicates(). The problematic

entries are shown below.

#> flight_num sched_dep_datetime sched_arr_datetime dep_delay arr_delay

#> 1 NK630 2017-08-03 17:45:00 2017-08-03 21:00:00 140 194

#> 2 NK630 2017-08-03 17:45:00 2017-08-03 21:00:00 140 194

#> carrier tailnum origin dest air_time distance origin_city_name

#> 1 NK N601NK LAX DEN 107 862 Los Angeles

#> 2 NK N639NK ORD LGA 107 733 Chicago

#> origin_state dest_city_name dest_state taxi_out taxi_in carrier_delay

#> 1 CA Denver CO 69 13 0

#> 2 IL New York NY 69 13 0

#> weather_delay nas_delay security_delay late_aircraft_delay

#> 1 0 194 0 0

#> 2 0 194 0 0

The issue was perhaps introduced when updating or entering the data into a system. The same

flight is scheduled at exactly the same time, together with the same performance statistics but

different flight details. As flight NK630 is usually scheduled at 17:45 from Chicago to New York

(discovered by searching the full database), a decision is made to remove the first row from the

duplicated entries before proceeding to the tsibble creation.

This dataset is intrinsically heterogeneous, encoded in numbers, strings, and date-times. The

tsibble framework, as expected, incorporates this type of data without any loss of data richness

Wang, Cook, Hyndman: 12 December 2019 17



A new tidy data structure to support exploration and modeling of temporal data

and heterogeneity. To declare the flight data as a valid tsibble, column sched_dep_datetime

is specified as the “index”, and column flight_num as the “key”. This data happens to be

irregularly spaced, and hence switching to the irregular option is necessary. The software

internally validates if the key and index produce distinct rows, and then sorts the key and the

index from past to recent. When the tsibble creation is done, the print display is data-oriented

and contextually informative, including dimensions, irregular interval with the time zone

(5,548,444 x 22 [!] <UTC>) and the number of observational units (flight_num [22,562]).

#> # A tsibble: 5,548,444 x 22 [!] <UTC>

#> # Key: flight_num [22,562]

Transforming a tsibble for exploratory data analysis with a suite of time-aware and general-

purpose manipulation verbs can result in well-constructed pipelines. A couple of use cases are

described to show how to approach the questions of interest by wrangling the tsibble while

maintaining its temporal context.

What time of day and day of week should passengers travel to avoid suffering from horrible

delay? Figure 5 plots hourly quantile estimates across day of week in the form of small mul-

tiples. The upper-tail delay behaviors are of primary interest, and hence 50%, 80% and 95%

quantiles are computed. This pipeline is initialized by regularizing and reshaping the list of

the upper quantiles of departure delays for each hour. To visualize the temporal profiles, the

time components (for example hours and weekdays) are extracted from the index. The flow

chart (Figure 6) demonstrates the operations undertaken in the data pipeline. The input to this

pipeline is a tsibble of irregular interval for all flights, and the output ends up with a tsibble of

one-hour interval by quantiles. To reduce the likelihood of suffering a delay, it is recommended

to avoid the peak hour around 6pm (18) from Figure 5.

A closer examination of some big airports across the US will give an indication of how well the

busiest airports manage the outflow traffic on a daily basis. A subset that contains observations

for Houston (IAH), New York (JFK), Kalaoa (KOA), Los Angeles (LAX) and Seattle (SEA)

airports is obtained first. The succeeding operations compute delayed percentages every day

at each airport, which are shown as gray lines in Figure 7. Winter months tend to fluctuate a

lot compared to the summer across all the airports. Superimposed on the plot are two-month

moving averages, so the temporal trend is more visible. Since the number of days for each month

is variable, moving averages over two months will require a weights input. But the weights

specification can be avoided using a pair of commonly used rectangling verbs–nest() and

unnest(), to wrap data frames partitioned by months into list-columns. The sliding operation

Wang, Cook, Hyndman: 12 December 2019 18



A new tidy data structure to support exploration and modeling of temporal data

Mon Tue Wed Thu Fri Sat Sun
50%

80%
95%

6:00 18:00 6:00 18:00 6:00 18:00 6:00 18:00 6:00 18:00 6:00 18:00 6:00 18:00

0

10

20

30

40

0

50

100

0

100

200

Time of day

D
ep

at
ur

e 
de

la
y 

(m
in

s)

Figure 5: Line plots showing departure delay against time of day, faceted by day of week and 50%, 80%
and 95% quantiles. The blue horizontal line indicates the 15-minute on-time standard to help
grasp the delay severity. Passengers are more likely to experience delays around 18 during a
day, and are recommended to travel early. The variations increase substantially as the upper
tails.

unnest the list of 
quantile estimates back 

to a tsibble

unnest()
add and extract hour, 
weekday, and dates 

from the index variable

mutate()

compute a list of three 
quantiles across all 
airports every hour

index_by()
summarize()

Figure 6: Flow chart illustrates the pipeline that preprocesses the data for creating Figure 5.

with a large window size smooths out the fluctuations and gives a stable trend around 25% over

the year, for IAH, JFK, LAX and SEA. LAX airport has seen a gradual decline in delays over the

year, whereas the SEA airport has a steady delay. The IAH and JFK airports have more delays

in the middle of year, while the KOA has the inverse pattern with higher delay percentage at

both ends of the year. This pipeline gets the data into the daily series, and shifts the focus to five

selected airports.

This case study begins with duplicates fixing, that resolved the issue for constructing the tsibble.

A range of temporal transformations can be handled by many free-form combinations of verbs,

facilitating exploratory visualization.

Wang, Cook, Hyndman: 12 December 2019 19



A new tidy data structure to support exploration and modeling of temporal data

IA
H

JF
K

K
O

A
LA

X
S

E
A

Jan 2017 Apr 2017 Jul 2017 Oct 2017 Jan 2018

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Date

P
ro

po
rt

io
n 

of
 fl

ig
ht

s 
de

la
ye

d

Figure 7: Daily delayed percentages for flight departure, with two-month moving averages overlaid, at
five international airports. There are least fluctuations, and relatively fewer delays, observed at
KOA airport.

pick observations 
recorded for five 
selected airports

filter()

add a new variable for 
year-month

mutate()

nest dates and daily 
percentages into a list-

column

nest()
unnest dates and daily 
percentages back to a 

tsibble

unnest()

compute the daily 
percentages of delayed 

flights

summarize()

prepare grouping for the 
variable `origin` and 
index for daily data

group_by()
index_by()

add and compute two-
month rolling averages 

for each `origin`

group_by()
mutate()

Figure 8: Flow chart illustrating the pipeline that preprocessed the data for creating Figure 7.

6.2 Smart-grid customer data in Australia

Sensors have been installed in households across major cities in Australia to collect data for

the smart city project. One of the trials is monitoring households’ electricity usage through

installed smart meters in the area of Newcastle over 2010–2014 (Department of the Environment

Wang, Cook, Hyndman: 12 December 2019 20



A new tidy data structure to support exploration and modeling of temporal data

and Energy 2018). Data from 2013 have been sliced to examine temporal patterns of customers’

energy consumption with tsibble for this case study. Half-hourly general supply in kwH has

been recorded for 2,924 customers in the data set, resulting in 46,102,229 observations in total.

Daily high and low temperatures in Newcastle in 2013 provide explanatory variables other

than time in a different data table (Bureau of Meteorology 2019), obtained using the R package

bomrang (Sparks et al. 2018). Aggregating the half-hourly energy data to the same daily time

interval as the temperature data allows us to join the two data tables to explore how local

weather can contribute to the variations of daily electricity use and the accuracy of demand

forecasting.

During a power outage, electricity usage for some households may become unavailable, thus

resulting in implicit missing values in the database. Gaps in time occur to 17.9% of the house-

holds in this dataset. It would be interesting to explore these missing patterns as part of a

preliminary analysis. Since the smart meters have been installed at different dates for each

household, it is reasonable to assume that the records are obtainable for different time lengths

for each household. Figure 9 shows the gaps for the top 49 households arranged in rows from

high to low in tallies. (The remaining households values have been aggregated into a single

batch and appear at the top.) Missing values can be seen to occur at any time during the entire

span. A small number of customers have undergone energy unavailability in consecutive hours,

indicated by a line range in the plot. On the other hand, the majority suffer occasional outages

with more frequent occurrence in January.

Aggregation across all individuals helps to sketch a big picture of the behavioral change over

time in the region, organized into a calendar display (Figure 10) using the sugrrants package

(Wang, Cook & Hyndman 2018). Each glyph represents the daily pattern of average residential

electricity usage every thirty minutes. Higher consumption is indicated by higher values,

and typically occurs in daylight hours. Color indicates hot days. The daily snapshots vary

depending on the season in the year. During the summer months (December and January), the

late-afternoon peak becomes the dominant usage pattern. This is probably driven by the use

of air conditioning, because high peaks mostly correspond to hot days, where daily average

temperatures are greater than 25 degrees Celsius. In the winter time (July and August) the daily

pattern sees two peaks, which is probably due to heating in the morning and evening.

A common practice with energy data analysis is load forecasting, because providers need to

know they have capacity to supply electricity. To illustrate the pipeline including modeling,

here demand is modeled for December 2013, with the usage forecast for the last day (48 steps

Wang, Cook, Hyndman: 12 December 2019 21



A new tidy data structure to support exploration and modeling of temporal data

Jan 2013 Apr 2013 Jul 2013 Oct 2013 Jan 2014
Time gaps

To
p 

cu
st

om
er

s
R

es
t

Figure 9: Exploring temporal location of missing values, using time gap plots for the 49 customers
with most implicit missing values. The remaining customers are grouped into the one line in
the bottom panel. Each cross represents an observation missing in time and a line between
two dots shows continuous missingness over time. Missing values tend to occur at various
times, although there is a higher concentration of missing in January and February for most
customers.

ahead because the data is half-hourly). The energy data for the last day is not used for modeling.

ARIMA models with and without a temperature covariate are fitted using automatic order

selection (Hyndman & Khandakar 2008). The logarithmic transformation is applied to the

average demand to ensure positive forecasts. Figure 11 plots one-day forecasts from both

models against the actual demand, for the last two-week window. The ARIMA model which

includes the average temperature covariate gives a better fit than the one without, although

Wang, Cook, Hyndman: 12 December 2019 22



A new tidy data structure to support exploration and modeling of temporal data

Jan Feb Mar Apr

May Jun Jul Aug

Sep Oct Nov Dec

M T W T F S S M T W T F S S M T W T F S S M T W T F S S

Hot day Not hot day

Figure 10: Half-hourly average electricity use across all customers in the region, organized into calendar
format, with color indicating hot days. Energy use of hot days tends to be higher, suggesting
air conditioner use. Days in the winter months have a double peak suggesting morning and
evening heater use.

both tend to underestimate the night demand. The forecasting performance is reported in Table

2, consistent with the findings in Figure 11.

Table 2: Accuracy measures to evaluate the forecasting performance between ARIMA models with and
without temperatures, using the validation set.

model ME RMSE MAE MPE MAPE

temperature -0.009 0.030 0.025 -6.782 11.446
w/o temperature 0.016 0.043 0.032 2.634 12.599

This case study demonstrates the significance of tsibble in lubricating the plumbing of handling

time gaps, visualizing, and forecasting in general.

Wang, Cook, Hyndman: 12 December 2019 23



A new tidy data structure to support exploration and modeling of temporal data

0.25

0.50

0.75

Dec 19 Dec 20 Dec 21 Dec 22 Dec 23 Dec 24 Dec 25 Dec 26 Dec 27 Dec 28 Dec 29 Dec 30 Dec 31 Jan 01
Reading time

A
ve

ra
ge

 e
le

ct
ric

ity
 u

se

temperature w/o temperature

Figure 11: One-day (48 steps ahead) forecasts generated by ARIMA models, with and without a tempera-
ture covariate, plotted against the actual demand. Both nicely capture the temporal dynamics,
but ARIMA with temperature performs better than the model without.

compute average 
electricity demand 

across all the customers

summarize()
arrange in the calendar 
format by adding two 
computed variables

frame_calendar()
join daily temperatures 
by a common variable 

`date`

left_join()
add and extract hour, 

weekday, and dates from 
the index variable

mutate()

fit two ARIMA models 
with and without 

temperatures

model()
generate one-day ahead 
forecasts for each fitted 

model

forecast()

Figure 12: Flow chart illustrating the pipeline involved for creating Figure 10 and Figure 11.

7 Conclusion and future work

The data abstraction, tsibble, for representing temporal data, extends the tidy data principles into

the time domain. Tidy data takes shape in the realm of time with the new contextual semantics:

index and key. The index variable provides direct support to an exhaustive set of ordered

objects. The key, which can consist of single or multiple variables, identifies observational units

over time. These semantics further determine unique data entries required for a valid tsibble.

It shepherds raw temporal data through the tidying stage of an analysis pipeline to the next

exploration stage to fluently gain insights.

The supporting toolkits articulate the temporal data pipeline, with the shared goal of reducing

the time between framing of data questions and the code realization. The rapid iteration for

broader understanding of the data is achieved through frictionlessly shifting among transforma-

tion, visualization, and modeling, using the standardized tsibble data infrastructure.

Future work includes allowing user-defined calendars, so that the tsibble structure respects

structural missing observations. For example, a call center may operate only between 9:00 am

Wang, Cook, Hyndman: 12 December 2019 24



A new tidy data structure to support exploration and modeling of temporal data

and 5:00 pm on week days, and stock trading resumes on Monday straight after Friday. No data

available outside trading hours would be labeled as structural missingness. Customer calendars

can be embedded into the tsibble framework in theory. A few R packages provide functionality

to create and manage many specific calendars, such as the bizdays package (Freitas 2018) for

business days calendars. However, a generic flexible calendar system is lacking, and requires

complex implementation, so this is left for future work.

Acknowledgments

The authors would like to thank Mitchell O’Hara-Wild for many discussions on the software

development and Davis Vaughan for contributing ideas on rolling window functions. We

also thank Stuart Lee for the feedback on this manuscript. We are grateful for anonymous

reviewers for helpful feedback that has led to many improvements in the paper. This article was

created with knitr (Xie 2015) and R Markdown (Xie, Allaire & Grolemund 2018). The project’s

Github repository https://github.com/earowang/paper-tsibble houses all materials required

to reproduce this article and a history of the changes.

References

Bache, SM & H Wickham (2014). magrittr: A Forward-Pipe Operator for R. R package version 1.5.

https://CRAN.R-project.org/package=magrittr.

Bengtsson, H (2019). future: Unified Parallel and Distributed Processing in R for Everyone. R package

version 1.11.1.1. https://CRAN.R-project.org/package=future.

Buja, A, D Asimov, C Hurley & JA McDonald (1988). “Elements of a Viewing Pipeline for Data

Analysis”. In: Dynamic Graphics for Statistics. Ed. by WS Cleveland & ME McGill. Belmont,

California: Wadsworth, Inc.

Bureau of Meteorology (2019). Australia’s National Weather Data. Australian Government, Bu-

reau of Meteorology. https://data.gov.au/dataset/4e21dea3-9b87-4610-94c7-

15a8a77907ef (visited on 01/12/2019).

Bureau of Transportation Statistics (2018). Carrier On-Time Performance. 1200 New Jersey Avenue,

SE Washington, DC 20590. https://www.transtats.bts.gov/DL_SelectFields.asp?

Table_ID=236 (visited on 09/26/2018).

City of Melbourne (2017). Pedestrian Volume in Melbourne. http : / / www . pedestrian .

melbourne.vic.gov.au.

Wang, Cook, Hyndman: 12 December 2019 25

https://github.com/earowang/paper-tsibble
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=future
https://data.gov.au/dataset/4e21dea3-9b87-4610-94c7-15a8a77907ef
https://data.gov.au/dataset/4e21dea3-9b87-4610-94c7-15a8a77907ef
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
http://www.pedestrian.melbourne.vic.gov.au
http://www.pedestrian.melbourne.vic.gov.au


A new tidy data structure to support exploration and modeling of temporal data

Codd, EF (1970). A relational model of data for large shared data banks. Communications of the

ACM 13(6), 377–387.

Croissant, Y & G Millo (2008). Panel Data Econometrics in R: The plm Package. Journal of

Statistical Software, Articles 27(2), 1–43. https://www.jstatsoft.org/v027/i02.

Department of the Environment and Energy (2018). Smart-Grid Smart-City Customer Trial Data.

Australian Government, Department of the Environment and Energy. https://data.gov.

au/dataset/4e21dea3-9b87-4610-94c7-15a8a77907ef (visited on 11/19/2018).

Eddelbuettel, D & L Silvestri (2018). nanotime: Nanosecond-Resolution Time for R. R package

version 0.2.3. https://CRAN.R-project.org/package=nanotime.

Freitas, W (2018). bizdays: Business Days Calculations and Utilities. R package version 1.0.6. https:

//CRAN.R-project.org/package=bizdays.

Friedman, DP & M Wand (2008). Essentials of Programming Languages, 3rd Edition. 3rd ed. The

MIT Press.

Grolemund, G & H Wickham (2011). Dates and Times Made Easy with lubridate. Journal of

Statistical Software, Articles 40(3), 1–25. https://www.jstatsoft.org/v040/i03.

Henry, L & H Wickham (2019a). purrr: Functional Programming Tools. R package version 0.3.0.

https://CRAN.R-project.org/package=purrr.

Henry, L & H Wickham (2019b). rlang: Functions for Base Types and Core R and ’Tidyverse’ Features.

R package version 0.3.1. https://CRAN.R-project.org/package=rlang.

Henry, L & H Wickham (2019c). Tidy Tidyverse Design Principles. https : / / principles .

tidyverse.org.

Hyndman, RJ & G Athanasopoulos (2017). Forecasting: Principles and Practice. Melbourne, Aus-

tralia: OTexts. OTexts.org/fpp2.

Hyndman, R & Y Khandakar (2008). Automatic Time Series Forecasting: The forecast Package

for R. Journal of Statistical Software, Articles 27(3), 1–22. https://www.jstatsoft.org/v027/

i03.

Hyndman, R, A Lee, E Wang & S Wickramasuriya (2018). hts: Hierarchical and Grouped Time Series.

R package version 5.1.5. https://CRAN.R-project.org/package=hts.

Kimball, R & J Caserta (2011). The Data Warehouse ETL Toolkit: Practical Techniques for Extracting,

Cleaning, Conforming, and Delivering Data. John Wiley & Sons.

Long, JA (2019). panelr: Regression Models and Utilities for Repeated Measures and Panel Data. R

package version 0.7.1. https://CRAN.R-project.org/package=panelr.

McIlroy, D, E Pinson & B Tague (1978). Unix Time-Sharing System Forward. The Bell System

Technical Journal, 1902–1903. https://archive.org/details/bstj57-6-1899.

Wang, Cook, Hyndman: 12 December 2019 26

https://www.jstatsoft.org/v027/i02
https://data.gov.au/dataset/4e21dea3-9b87-4610-94c7-15a8a77907ef
https://data.gov.au/dataset/4e21dea3-9b87-4610-94c7-15a8a77907ef
https://CRAN.R-project.org/package=nanotime
https://CRAN.R-project.org/package=bizdays
https://CRAN.R-project.org/package=bizdays
https://www.jstatsoft.org/v040/i03
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=rlang
https://principles.tidyverse.org
https://principles.tidyverse.org
OTexts.org/fpp2
https://www.jstatsoft.org/v027/i03
https://www.jstatsoft.org/v027/i03
https://CRAN.R-project.org/package=hts
https://CRAN.R-project.org/package=panelr
https://archive.org/details/bstj57-6-1899


A new tidy data structure to support exploration and modeling of temporal data

O’Hara-Wild, M, R Hyndman & E Wang (2019). fable: Forecasting Models for Tidy Time Series. R

package version 0.1.0. https://fable.tidyverts.org.

Pebesma, E (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The

R Journal 10(1), 439–446. https://journal.r-project.org/archive/2018/RJ-2018-

009/index.html.

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing. Vienna, Austria. https://www.R-project.org/.

Ryan, JA & JM Ulrich (2018). xts: eXtensible Time Series. R package version 0.11-0. https:

//CRAN.R-project.org/package=xts.

SAS Institute Inc. (2018). SAS/STAT Software, Version 9.4. Cary, NC. http://www.sas.com/.

Sparks, A, J Carroll, D Marchiori, M Padgham, H Parsonage & K Pembleton (2018). bomrang:

Australian Government Bureau of Meteorology (BOM) Data from R. R package version 0.4.0.

https://CRAN.R-project.org/package=bomrang.

StataCorp (2017). Stata Statistical Software: Release 15. StataCorp LLC. College Station, TX, United

States. https://www.stata.com.

Sutherland, P, A Rossini, T Lumley, N Lewin-Koh, J Dickerson, Z Cox & D Cook (2000). Orca:

A Visualization Toolkit for High-Dimensional Data. Journal of Computational and Graphical

Statistics 9(3), 509–529.

Swayne, DF, D Cook & A Buja (1998). XGobi: Interactive Dynamic Data Visualization in the X

Window System. Journal of Computational and Graphical Statistics 7(1), 113–130.

Swayne, DF, D Temple Lang, A Buja & D Cook (2003). GGobi: evolving from XGobi into

an extensible framework for interactive data visualization. Computational Statistics & Data

Analysis 43, 423–444.

Tidyverse Team (2019). Tidy Evaluation. https://tidyeval.tidyverse.org.

Tidyverts Team (2019). Tidy tools for time series. http://tidyverts.org.

Tierney, NJ & D Cook (2018). Expanding tidy data principles to facilitate missing data exploration,

visualization and assessment of imputations. eprint: arXiv:1809.02264.

Vaughan, D & M Dancho (2018a). furrr: Apply Mapping Functions in Parallel using Futures. R

package version 0.1.0. https://CRAN.R-project.org/package=furrr.

Vaughan, D & M Dancho (2018b). tibbletime: Time Aware Tibbles. R package version 0.1.1. https:

//CRAN.R-project.org/package=tibbletime.

Wang, E, D Cook & R Hyndman (2019). tsibble: Tidy Temporal Data Frames and Tools. R package

version 0.8.3. https://tsibble.tidyverts.org.

Wang, Cook, Hyndman: 12 December 2019 27

https://fable.tidyverts.org
https://journal.r-project.org/archive/2018/RJ-2018-009/index.html
https://journal.r-project.org/archive/2018/RJ-2018-009/index.html
https://www.R-project.org/
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=xts
http://www.sas.com/
https://CRAN.R-project.org/package=bomrang
https://www.stata.com
https://tidyeval.tidyverse.org
http://tidyverts.org
arXiv:1809.02264
https://CRAN.R-project.org/package=furrr
https://CRAN.R-project.org/package=tibbletime
https://CRAN.R-project.org/package=tibbletime
https://tsibble.tidyverts.org


A new tidy data structure to support exploration and modeling of temporal data

Wang, E, D Cook & RJ Hyndman (2018). Calendar-based graphics for visualizing people’s daily

schedules. eprint: arXiv:1810.09624.

Wickham, H (2009). ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag

New York.

Wickham, H (2014). Tidy Data. Journal of Statistical Software 59(10), 1–23.

Wickham, H (2018). Advanced R. 2nd ed. Chapman & Hall. https://adv-r.hadley.nz/.

Wickham, H, R François, L Henry & K Müller (2019). dplyr: A Grammar of Data Manipulation.

http://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr.

Wickham, H & G Grolemund (2016). R for Data Science. O’Reilly Media. http://r4ds.had.co.

nz/.

Wickham, H, M Lawrence, D Cook, A Buja, H Hofmann & DF Swayne (Apr. 2010). The Plumbing

of Interactive Graphics. Computational Statistics, 1–7.

Wilkinson, L (2005). The Grammar of Graphics (Statistics and Computing). Secaucus, NJ: Springer-

Verlag New York, Inc.

World Health Organization (2018). Tuberculosis Data. Block 3510, Jalan Teknokrat 6, 63000 Cyber-

jaya, Selangor, Malaysia. http://www.who.int/tb/country/data/download/en/ (visited

on 06/05/2018).

Xie, Y (2015). Dynamic Documents with R and knitr. 2nd. Boca Raton, Florida: Chapman and

Hall/CRC. https://yihui.name/knitr/.

Xie, Y, J Allaire & G Grolemund (2018). R Markdown: The Definitive Guide. Boca Raton, Florida:

Chapman and Hall/CRC. https://bookdown.org/yihui/rmarkdown.

Xie, Y, H Hofmann & X Cheng (May 2014). Reactive Programming for Interactive Graphics.

Statistical Science 29(2), 201–213.

Zeileis, A & G Grothendieck (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series.

Journal of Statistical Software 14(6), 1–27. https://www.jstatsoft.org/v014/i06.

Wang, Cook, Hyndman: 12 December 2019 28

arXiv:1810.09624
https://adv-r.hadley.nz/
http://r4ds.had.co.nz/
http://r4ds.had.co.nz/
http://www.who.int/tb/country/data/download/en/
https://yihui.name/knitr/
https://bookdown.org/yihui/rmarkdown
https://www.jstatsoft.org/v014/i06

	1 Introduction
	2 Data structures
	2.1 Comparing time series and longitudinal data
	2.2 Existing data standards
	2.3 Tidy data

	3 Contextual semantics
	3.1 Index
	3.2 Key
	3.3 Interval

	4 Temporal data pipelines
	4.1 Transformation
	4.2 Visualization
	4.3 Model
	4.4 Summary

	5 Software structure and design decisions
	5.1 Data first
	5.2 Functional programming
	5.3 Modularity
	5.4 Extensibility
	5.5 Tidy evaluation

	6 Case studies
	6.1 On-time performance for domestic flights in U.S.A
	6.2 Smart-grid customer data in Australia

	7 Conclusion and future work
	Acknowledgments

	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


